DRAHTFASS WIRE DRUM

Mit Deckel & Spannring With Lid & Tension Ring

DF 180

Die umweltfreundliche Mehrweg-Alternative zu Pappfässern The eco-friendly reusable alternative to cardboard-drums

ask for **BENEFITS**

enorme Kostenreduzierung enormous cost-reduction

oft wiederverwendbar often reusable

witterungsbeständig outdoor storage leicht zu reinigen easily to clean

kompatibel zu Pappfässerr compatible with cardboard-drums

stapelbar stackable

Technische Daten Technical Data

PE-HD	Gewicht gesamt total weight	Füllvolumen filling volume	Füllgewicht (Cu) wire weight (Cu)	
	5,8 kg			

WERKSTOFF-HINWEISE MATERIAL NOTES

S	PS-TSG	ABS	ABS-SC	ABS-SC-GF	PΑ	PA-GF	
BEZEICHNUNG TERM			-				
hochschlagfestes Polystyrol high impact polystyrene	ist ein geschäumtes, hoch- schlagfestes Polystyrol, welches bei großvolumigen Teilen zur Gewichtseinspa- rung eingesetzt wird is a foamed, high impact polystyrene, which is used in large-volume parts to save weight	Acrylnitril Butadien Styrol acrylonitrile-butadiene- styrene	besonders kältebeständi- ges und chemikalienbestän- diges ABS, auf Anfrage especially cold-resistant and chemical resistant ABS, upon request	besonders kältebeständi- ges und chemikalienbe- ständiges ABS, Glasfaser, auf Anfrage especially cold-resistant and chemical resistant ABS, glass fibre, upon request	Polyamid polyamide	glasfaserverstärktes Polyamid glass fibre reinforced polyamide	
BESONDERHEIT SPECIAL			PREMIUM	MATERIAL			
			Compound entwickelt, die Ti chemischen Medien wie Sch bzw. schwachen Lösungsr ABS-SC and ABS-SC-GF wer pounds for spools that are influences as well as chemic	rden für Spulen als Spezial- eftemperatureinflüssen sowie nmier- oder Benetzungsölen, nitteln ausgesetzt werden. e developed as special com- exposed to low-temperature cal media such as lubricating or weak solvents.			
DICHTE DENSITY							
1,03-1,06 g/cm ³	0,60-0,95 g/cm³	1,04-1,08 g /cm³	1,06-1,09 g/cm ³	-	1,10-1,15 g/cm ³	1,30-1,40 g/cm ³ (30% Glasfaser/glass fibre)	
WÄRMEFORMBESTÄNDIGK THERMAL RESISTANCE 1)				<u></u>			
ca. 60° C	ca. 60° C	ca. 70° C	ca. 75°C - 85°C	ca. 80°C-85°C	ca. 135° C	ca. 140° C	
CHEMISCHE BESTÄNDIGKEI	T ²⁾						
beständig gegen Wasser, Alkalien und verdünnte Mineralsäuren, wie auch gegen wässrige Lösungen der meisten Salze beständig gegen Wasser, Alkalien und verdünnte Mineralsäuren, wie auch gegen wässrige Lösungen der meisten Salze resistant to water, alkalis, and diluted mineral acids as well as aqueous solu-				beständig gegen Wasser, Alkalien und verdünnte Mineralsäuren, wie auch gegen wässrige Lösungen der meisten Salze, sowie gegen Schmierstoffe und Kraftstoffe			
resistant to water, alkalis, and diluted mineral acids as well as aqueous solutions of most salts • von einer Reihe organischer Lösemittel (z. B. aromatische und chlorierte Kohlenwasserstoffe, Ether, Ester und Ketone) wird es angequollen, teils gelöst it is swollen and partly dissolved by a number of organic solvents (e.g. aromatic and chlorinated hydrocarbons, ethers, esters and ketones) • keine Beständigkeit gegen konzentrierte Schwefelsäure und stark oxidierende Agenzien z. B. Salpetersäure, Chlorwasser, Bromwasser und Bleichlauge no resistance to concentrated sulphuric acid or highly oxidizing agents, e.g. nitric acid, chlorine water, bromine water and bleaching solution						resistant to water, alkalis, and diluted mineral acids as well as aqueous solutions of most salts, and to lubricants and fuels	
		and chlorinated hydr				von einer Reihe organischer Lösemittel (z. B. aro- matische und chlorierte Kohlenwasserstoffe, Ether, Ester und Ketone) wird es angequollen, teils gelöst it is swollen and partly dissolved by a number of organic solvents (e.g. aromatic and chlorinated hydrocarbons, ethers, esters and ketones) keine Beständigkeit gegen konzentrierte Schwe- felsäure und stark oxidierende Agenzien z. B. Salpetersäure, Chlorwasser, Bromwasser und Bleichlauge	
		Agenzien z.B. Salpete					
		nitric acid, chlorine v					
						no resistance to concentrated sulphuric acid or highly oxidizing agents, e.g. nitric acid, chlorine water, bromine water and bleaching solution	
SPANNUNGSRISSVERHALTEN STRESS CRACKING ²⁾	V ²⁾						
Durch äußere oder innere mechanische Spannungen können bei unmodifiziertem ABS unter Einwirkung schädigender Medien (z. B. bei Ziehölen, Trennmitteln, Gleitmitteln oder Avivageölen) Risse entstehen, jedoch deutlich weniger als bei Polystyrol. Dies führt im weiteren Verlauf zu Materialversprödung und zum Bruch der Spulen oder Behälter. External or internal mechanical stresses can cause cracks in unmodified ABS under the influence of damaging media (e.g. drawing oils, release agents, lubricants or brightening oils), but considerably less than with polystyrene. This then leads to material brittleness and breakage of the spools or containers.		tem ABS unter Einwir teln, Gleitmitteln ode als bei Polystyrol. Die	tem ABS unter Einwirkung schädigender Medien (z.B. bei Ziehölen, Trennmit- teln, Gleitmitteln oder Avivageölen) Risse entstehen, jedoch deutlich weniger als bei Polystyrol. Dies führt im weiteren Verlauf zu Materialversprödung und		nungsrissbildung	ständigkeit gegenüber Span- e to stress cracking	
		External or internal r under the influence of lubricants or brighter	zum Bruch der Spulen oder Behälter. External or internal mechanical stresses can cause cracks in unmodified ABS under the influence of damaging media (e.g. drawing oils, release agents, lubricants or brightening oils), but considerably less than with polystyrene. This then leads to material brittleness and breakage of the spools or containers. sehr gute Spannungs-Dehnungseigenschaften bei ABS-SC und eine deutlich bessere Beständigkeit gegenüber Spannungsrissbildung als unmodifiziertes ABS excellent stress and stretching properties with ABS-SC and significantly better resistance to stress cracking than unmodified ABS			die für Polystyrol und ABS kritischen Medien wie Netzmittel, ätherische Öle oder bestimmte Lösemittel (Alkohole) führen bei Polyamid zu keiner Beeinträchtigung des Zeitstandverhaltens the media critical for polystyrene and ABS such as wetting agents, essential oils or certain solvents (alcohols) do not impair the creep behaviour of polyamide	
		 This then leads to ma sehr gute Spannungs bessere Beständigke excellent stress and s 					

die für Polystyrol und ABS kritischen Medien wie Netzmittel, ätherische Öle oder bestimmte Lösemittel (Alkohole) und einfache Kraftstoffe führen bei ABS-SC nur minimal und in Ausnahmefällen zu einer Beeinträchtigung des Zeitstandverhaltens

the media critical for polystyrene and ABS, such as wetting agents, essential oils or certain solvents (alcohols) and simple fuels only have a minimal effect on the creep behaviour of ABS-SC and, in exceptional cases, an impairment of this behaviour

ask for **MORE**

ASTROPLAST KUNSTSTOFFTECHNIK GMBH & CO. KG

Steinwiese 7 59872 Meschede Germany tel +49 291 95295 0 fax +49 291 95295 295 info@astroplast.de www.astroplast.de